Fetal Exposure to PCBs and Their Hydroxylated Metabolites in a Dutch Cohort
نویسندگان
چکیده
Polychlorinated biphenyls (PCBs) are still the most abundant pollutants in wildlife and humans. Hydroxylated PCB metabolites (OH-PCBs) are known to be formed in humans and wildlife. Studies in animals show that these metabolites cause endocrine-related toxicity. The health effects in humans have not yet been evaluated, especially the effect on the fetus and newborn. The aim of this study is to measure the levels of PCBs and OH-PCBs in maternal and cord blood samples in a population with background levels of PCBs. We analyzed 51 maternal and corresponding cord blood samples in the northern part of the Netherlands. The PCB concentrations in maternal plasma ranged from 2 to 293 ng/g lipid, and OH-PCB concentrations from nondetectable (ND) to 0.62 ng/g fresh weight. In cord plasma, PCB concentrations were 1-277 ng/g lipid, and OH-PCB concentrations, ND to 0.47 ng/g fresh weight. The cord versus maternal blood calculated ratio was 1.28 +/- 0.56 for PCBs and 2.11 +/- 1.33 for OH-PCBs, expressed per gram of lipid. When expressed per gram fresh weight, the ratios are 0.32 +/- 0.15 and 0.53 +/- 0.23 for PCBs and OH-PCBs, respectively. A significant correlation between the respective maternal and cord levels for both PCBs and OH-PCBs was found. Our results indicate that OH-PCBs and PCBs are transferred across the placenta to the fetus in concentrations resulting in levels of approximately 50 and 30%, respectively, of those in maternal plasma. More research in humans is needed to evaluate potential negative effects of these endocrine disruptors on the fetus.
منابع مشابه
Exposure to Hydroxylated Polychlorinated Biphenyls (OH-PCBs) in the Prenatal Period and Subsequent Neurodevelopment in Eastern Slovakia
BACKGROUND Hydroxylated polychlorinated biphenyls (OH-PCBs), unlike PCBs, are in general readily excreted yet are still detected in humans and animals. Active transport of OH-PCBs across the placenta and hydroxylation of PCBs by the fetus suggest the potential for greater impact on the fetus compared with the parent PCB compounds, but little is known about their health effects, particularly in ...
متن کامل2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) Is Atropselectively Metabolized to para-Hydroxylated Metabolites by Human Liver Microsomes
Exposure to neurotoxic, chiral PCBs has been associated with neurodevelopmental disorders, but their metabolism in humans remains unexplored. We investigated the enantioselective metabolism of PCB 95 by human liver microsomes (HLMs) to potentially neurotoxic, hydroxylated metabolites (OH-PCBs). OH-PCB profiles formed in experiments with HLMs differed from metabolite profiles reported for rodent...
متن کاملA Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans
BACKGROUND Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (HO-PCBs) interfere with thyroid hormone action both in vitro and in vivo. However, epidemiologic studies on the link between PCB exposure and thyroid function have yielded discordant results, while very few data are available for HO-PCBs. OBJECTIVES Our study aimed at investigating the relationship between clinica...
متن کامل2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and its hydroxylated metabolites are enantiomerically enriched in female mice.
Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in ...
متن کاملPlacental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat.
Earlier studies at our laboratory indicated that several hydroxylated polychlorinated biphenyls (OH-PCBs) detected in human blood could specifically inhibit thyroxine (T(4)) transport by competitive binding to the thyroid hormone transport protein transthyretin (TTR) in vitro. In the present study we investigated the effects of prenatal exposure to 5 mg/kg body weight of [14C]-labeled or unlabe...
متن کامل